1. मॉडचूल और इसकी संरचना

मॉडचूल विस्तार		
विषय का नाम	जीव विज्ञान	
पाठचक्रम का नाम	जीव विज्ञान 01 (कक्षा XI, छमाही-1)	
मॉडचूल का नाम / शीर्षक	द्वितीयक वृद्धि - भाग 3	
मॉडचूल आईडी	kebo_10603	
पूर्व-अपेक्षित	द्वितीयक वृद्धि के मूलभूत लक्षण	
उद्देश्य	इस पाठ के अध्ययन के बाद, शिक्षार्थी निम्नलिखित को समझने में	
	सक्षम होंगे:	
	 द्वितीयक संवहन वृद्धि 	
	• स्थायी ऊतक	
	 अन्तः काष्ठ तथा रस काष्ठ 	
मुख्य शब्द	पार्श्व विभज्योतक, द्वितीयक संवहन वृद्धि, अंतरा पूलीय एधा, परित्वक	

2. विकास दल

भूमिका	नाम	सम्बद्धता
राष्ट्रीय MOOC समन्वयक (NMC)	प्रो. अमरेंद्र पी बेहरा	सीआईईटी, एनसीईआरटी, नई दिल्ली
कार्यक्रम के समन्वयक	डॉ. मो. ममूर अली	सीआईईटी, एनसीईआरटी, नई दिल्ली
पाठचक्रम समन्वयक (सीसी) / पीआई	डॉ सुनीता फरक्या	डी.इ.एस.एम., एन.सी.ई.आर.टी., नई दिल्ली
पाठचक्रम सह समन्वयक/ सह- पी.आई.	डॉ. यश पॉल शर्मा	सी.आइ.इ.टी., एन.सी.ई.आर.टी., नई दिल्ली
विषय वस्तु विशेषज्ञ	डॉ. पी. चित्रलेखा	दयाल सिंह कॉलेज, दिल्ली विश्वविद्यालय, दिल्ली
समीक्षा दल	डॉ. के.वी. श्रीदेवी	आरएमएसए प्रोजेक्ट सेल, एनसीईआरटी, नई दिल्ली
अनुवादक	राजेश लोमरोर	गंवर्नमेंट कॉलेज, दमन

विषय - सूची:

- 1. परिचय
- 2. द्वितीयक संवहन वृद्धि
 - 2.1 तने में द्वितीयक संवहन वृद्धि
- 3. अन्तः काष्ठ तथा रस काष्ठ
- 4. सारांश

1. परिचय :

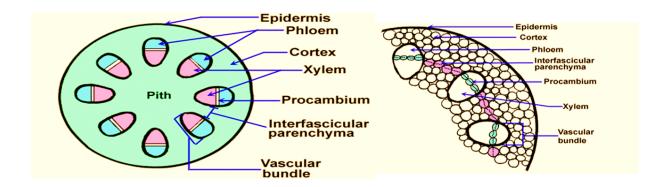
किसी पादप की न केवल लम्बाई बढ़ती है, बल्कि उसकी मोटाई (व्यास) में भी वृद्धि होती है। लम्बाई में वृद्धि को प्राथमिक वृद्धि के नाम से भी जाना जाता है, जो कि तने तथा मूल के अग्रस्थ भागों में उपस्थित शीर्षस्थ विभज्योतक कोशिकाओं की क्रियाशीलता का परिणाम है। पार्र्व विभज्योतक कोशिकाओं की सिक्रयता से निर्मित द्वितीयक ऊतकों के फलस्वरूप पादप की मोटाई या व्यास में वृद्धि होती है। यह वृद्धि द्वितीयक वृद्धि कहलाती है। सामान्यतः, द्वितीयक वृद्धि सभी द्विबीजपत्री पादपों में अनुपस्थित होती है (अपवाद के रूप में कुछ विषम प्रकार की द्वितीयक वृद्धि को छोड़कर)। कुछ शाकीय द्विबीजपत्री प्रजातियों में यह सीमित अथवा अनुपस्थित होती है। कुछ द्विबीजपत्री प्रजातियों में असामान्य अथवा विषम प्रकार की द्वितीयक वृद्धि पायी जाती है।

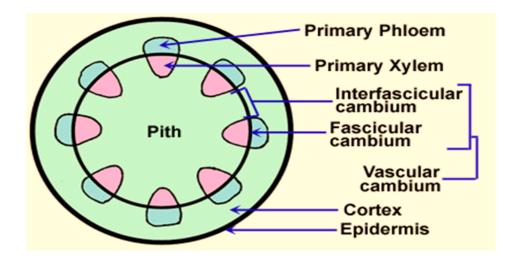
पार्श्व विभज्योतक दो प्रकार की होती है - संवहन एधा तथा कॉर्क एधा । जहाँ संवहन एधा की सिक्रयता से द्वितीयक संवहनी ऊतकों का निर्माण होता है तथा बढ़ते पादप में जल, खिनज लवण और भोजन की पूर्ति हेतु संवहनी ऊतकों की मोटाई में वृद्धि होती है, वहीं दूसरी ओर कॉर्क एधा (जिसे कागजन भी कहते है) की सिक्रयता से मृत और क्षत विक्षत कोशिकाओं की बाहरी परतों (जो कि तने की मोटाई बढ़ने के साथ साथ नष्ट होती जाती है) की भरपाई हेतु संवहन ऊतकों के बाहर की तरफ द्वितीयक वल्कुट तथा कॉर्क ऊतक (द्वितीयक भरण ऊतक / परित्वक) का निर्माण होता है। संवहन एधा तथा कॉर्क एधा दोनों की कोशिकाएं घनाभाकार तथा अत्यधिक रिक्तिका युक्त होती है।

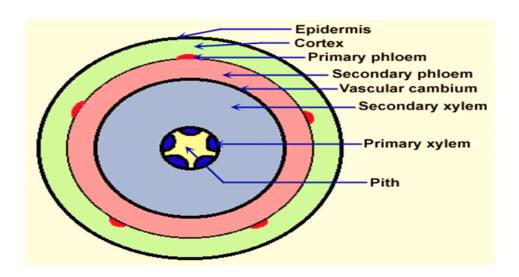
2. द्वितीयक संहवनी वृद्धिः

संवहन एधा समसूत्री विभाजन के फलस्वरूप तने व मूल में द्वितीयक संहवनी ऊतकों का निर्माण करती है। सामान्यतः, संवहन एधा से कोशिकाएं भीतर की विभेदित होकर द्वितीयक जाइलम तथा बाहर की ओर विभेदित होकर द्वितीयक फ्लोएम बनाती है। एक बार संवहन एधा के निर्मित होने के पश्चात यह पादप के तने व मूल में जीवनपर्यन्त सिक्रय रहती है। हालाँकि, तने व मूल में संवहन एधा के उद्धभव व विकास की प्रक्रिया थोड़ी भिन्न है।

2.1 तने में द्वितीयक संहवनी वृद्धि:

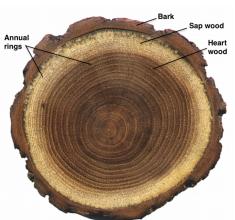

सामान्यतया खुले संहवन पूल युक्त तनों द्वारा द्वितीयक संहवनी वृद्धि प्रदर्शित की जाती है। खुले संहवन पूल में जाइलम तथा फ्लोएम ऊतकों के मध्य कैम्बियम / एधा कोशिकाएं (भ्रूण के प्राक एधा के अवशेष के रूप में)पाई जाती है। शाकीय पादपों में यह एधा विभाजित होना बंद हो जाती है तथा जाइलम व फ्लोएम ऊतकों में विभेदित हो जाती है। काष्ठीय पादपों की एधा में विभाजन की क्षमता बनी रहती है तथा यह विभेदित होकर अन्त: पूलीय एधा (जिसे पूलीय एधा भी कहते है) बनाती है।


अन्तः पूलीय एधा की सिक्रयता के फलस्वरूप द्वितीयक वृद्धि आरम्भ होती है, जिससे तने में भीतर अर्थात केंद्र की ओर द्वितीयक जाइलम तथा बाहर की ओर द्वितीयक फ्लोएम बनते हैं। इसी क्रम में, समीप के संहवन पूलों की अन्तः पूलीय एधा के मध्य उपस्थित मज्जा किरणों की मृदूत्तकी कोशिकाएं विभज्योतक प्रकृति की हो जाती हैं तथा विभेदित होकर अन्तरा पूलीय एधा का निर्माण करती हैं। ये एधा अपने दोनों तरफ की पूलीय एधाओं को जोड़ती हैं, जिससे संहवन एधा की एक वलय का निर्माण होता है। संहवन एधा की यह वलय विभेदित होकर भीतर की ओर द्वितीयक जाइलम की वलय तथा बाहर की ओर द्वितीयक फ्लोएम की वलय बनाती है। किसी भी वर्ष में, जाइलम और फ्लोएम दोनों का उत्पादन किया जाता है लेकिन फ्लोएम की तुलना में लगभग हमेशा अधिक जाइलम बनता है। क्योंकि द्वितीयक संहवनी ऊतकों के विस्तार स्वरुप निरंतर दबाव पड़ने से बाहरी फ्लोएम की परतें टूटती जाती है।


संहवन एधा दो प्रकार की कोशिकाओं से मिलकर बनी होती है - तर्कुरुपी आद्यक और रिश्म आद्यक। तर्कुरुपी आद्यक लंबवत दीर्घ तथा नुकीले सिरों युक्त होती है। ये विभाजित होकर द्वितीयक जाइलम की दीर्घाकार कोशिकाएं जैसे वाहिनिकाएं, वाहिकाएं एवम् जाइलम रेशे इत्यादि बनाती हैं। इसी तरह ये तर्कुरूपी आद्यक द्वितीयक फ्लोएम की कोशिकाएं जैसे - चालनी नलिकाएं, सह कोशिकाएँ एवं फ्लोएम रेशे इत्यादि बनाती हैं।

रिश्म आद्यक छोटी क्षैतिज (अरीय) कोशिकाएं होती है, जो रिश्म मृदूत्तक कोशिकाएं बनाती है। ये कोशिकाएं द्वितीयक जाइलम तथा द्वितीयक फ्लोएम में से अरीय दिशा में विभेदित होते हुए **द्वितीयक मज्जा किरणें** बनाती हैं। विभिन्न पदार्थ जैसे स्टार्च, प्रोटीन, वसा कण इत्यादि का संग्रह तथा रस (जल व खनिज लवण) का कम दूरी तक क्षैतिज प्रवाह रिश्म कोशिकाओं का मुख्य कार्य है।

द्वितीयक जाइलम (जिसे काष्ठ भी कहते हैं) मुख्यतः वाहिनिकाओं, वाहिकाओं तथा मृत व लिग्निन युक्त रेशों से मिलकर बना होता है। इस प्रकार जल व खनिज लवणों के संचरण के अतिरिक्त, काष्ठ की लिग्निन युक्त कोशिकाएं वृद्धिशील पादप को यांत्रिक सहारा भी प्रदान करती हैं।



बसंत काष्ठ तथा शरद काष्ठ

संवहनी एधा की सिक्रियता पूरे वर्ष एक समान नहीं रहती है Annual बिल्क परिवर्तनशील रहती है। यह कई प्रकार के वातावरणीय तथा कार्यिकी कारकों से प्रभावित होती है।

समशीतोष्ण क्षेत्रों में, जहां शरद व शीत ऋतु के दौरान न्यून तापमान तथा भूमिगत जल की उपलब्धता कम होती है, उन परिस्थितियों में कैंबियम (एधा) की सिक्रयता घट जाती है। इस स्थिति में द्वितीयक जाइलम कम बनता है तथा इसकी कोशिकाएं संकरी गुहिका तथा मोटी भित्ति युक्त होती है।

Transverse section of Robinia tree trunk

संवहनी एधा की सिक्रियता पूरे वर्ष एक समान नहीं रहती है बल्कि परिवर्तनशील रहती है। यह कई प्रकार के वातावरणीय तथा कार्यिकी कारकों से परभावित होती है।

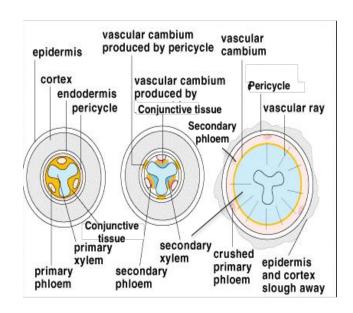
समशीतोष्ण क्षेत्रों में, जहां शरद व शीत ऋतु के दौरान न्यून तापमान तथा भूमिगत जल की उपलब्धता कम होती है, उन परिस्थितियों में कैंबियम (एधा) की सिक्रियता घट जाती है। इस स्थिति में द्वितीयक जाइलम कम बनता है तथा इसकी कोशिकाएं संकरी गुहिका तथा मोटी भित्ति युक्त होती है। इस प्रकार की काष्ठ सघन, गहरे रंग की तथा अत्यधिक रेशों युक्त होती है। वृद्धिशील ऋतु के अंत में निर्मित होने के कारण इसे शरद काष्ठ अथवा पश्च दारू कहते है।

लेकिन बसंत ऋतु व गर्मियों में जहां तापमान उच्च तथा जल की पर्याप्त मात्रा रहती है, उन परिस्थितयों में कैंबियम (एधा) अधिक सिक्रय हो जाती है। इस स्थिति में जाइलम अधिक बनता है तथा इसकी कोशिकाएं चौड़ी गुहिका व पतली भित्ति युक्त होती है। इस काष्ठ में रेशे कम मात्रा में पाए जाते है। यह हल्की होती है, इसे बसंत काष्ठ अथवा अग्र दारू कहते है।

एक वर्ष अथवा अगिरम ऋतु में निर्मित हल्के रंग की अग्र दारू (बसंत काष्ठ) तथा गहरे रंग की पश्च दारू (शरद काष्ठ) बनने के फलस्वरूप एक वार्षिक वलय अथवा वृद्धि वलय निर्मित होती है। अगर अग्र दारू और पश्च दारू में विशिष्ट अंतर प्रकट होता है, तो वृद्धि वलय स्पष्ट दिखाई देती है। इन वलयों का उपयोग वृक्ष की आयु के निर्धारण में किया जाता है। वृद्धि वलयों अथवा वार्षिक वलयों के अध्ययन के आधार पर वृक्षों के आयु का पता लगाने की विज्ञान की शाखा डेंड्रोक्रोनोलॉजी (वृक्षकालानुक्रमण) कहलाती है।

3. अंत: काष्ठ तथा रस काष्ठ:

जैसे जैसे संहवन उतकों की द्वितीयक वृद्धि होती रहती है, तने के भीतर अर्थात केंद्र की ओर निर्मित जाइलम तत्व निष्क्रिय हो जाते हैं तथा जल का संचरण बंद हो जाता है। काष्ठ के इस भाग में अब अनेक कार्बनिक पदार्थ जैसे - टैनिन, रेजिन, गौंद, तेल, फेनोल्स व गंधयुक्त पदार्थ इत्यादि के जमा होने से यह भाग गहरे रंग का दिखाई देता है तथा प्राय: सुगंधित होता है। इस काष्ठ को अंत: काष्ठ अथवा हृद दारू कहा जाता है। इन पदार्थों की उपस्थित से अंत: काष्ठ भारी, अधिक चिरस्थायी तथा कीड़ों व रोगजनक जीवों हेतु प्रतिरोधी होती है।


तने के बाहरी भागों अर्थात् परिधि की ओर उपस्थित काष्ठ जीवित मृदूत्तकी कोशिकाओं युक्त होती है, जिसे रस काष्ठ कहते है। प्रत्येक वर्ष रस काष्ठ की एक नई परत बनती है। जाइलम के कि्रयाशील तत्व इसी काष्ठ में उपस्थित होते है। यह काष्ठ अंतः काष्ठ की तुलना में रोगजनक जीवों व कीड़ों के प्रति अधिक संवेदनशील है।

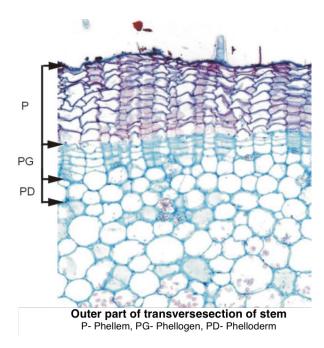
मूल में द्वितीयक संहवन वृद्धिः

मूलों में अरीय तथा बंद प्रकार के संहवन पूल पाए जाते है, जहां जाइलम तथा फ्लोएम ऊतक एक दूसरे के एकांतर क्रम में व्यवस्थित होते हैं तथा इनमें कैंबियम (एधा) अनुपस्थित होती है। मृदूतकी कोशिकाओं की कुछ परतें, जिन्हें सयोंजी ऊतक कहा जाता है, प्राथमिक जाइलम और प्राथमिक फ्लोएम के बीच स्थित होती हैं।

मूलों में द्वितीयक वृद्धि का आरंभ संयोजी ऊतक के संहवन एधा में विभेदन के साथ होता है। संयोजी ऊतक की कोशिकाएं विभज्योत्तकी हो जाती हैं। तथा चाप के रूप में संहवनी एधा में विभेदित हो जाती है।

Secondary Root Growth

ये एधा कोशिकाएं विभेदित होकर द्वितीयक संहवन ऊतक बनाती हैं। ये भीतर की ओर (प्राथमिक जाइलम की ओर) विभेदित होकर द्वितीयक जाइलम तथा बाहर की ओर (प्राथमिक फ्लोएम की ओर) द्वितीयक फ्लोएम ऊतक बनाती हैं। भीतर (केंद्र) की ओर द्वितीयक जाइलम के संचय होने से दबाव के फलस्वरूप एधा परत बाहर की ओर खिसकती है तथा अंततः जाइलम तत्वों के शीर्ष छोर पर पहुंच जाती है। इस दौरान प्रोटोजाइलम (आदि दारू) से सटी कोशिकाएं विभज्योत्तकी प्रकृति की हो जाती है तथा संहवनी एधा के चाप से मिल जाती है, जिससे संहवनी एधा एक वलय के रूप में बन जाती है। संहवनी एधा की सिक्रयता से भीतर की ओर द्वितीयक जाइलम तथा बाहर की ओर द्वितीयक फ्लोएम की वलय बनती है। आमतौर पर मूल में निर्मित द्वितीयक जाइलम तथा फ्लोएम ऊतक तने के ऊतकों के समान होते है, परन्तु मूल में तने की तुलना में कम मात्रा में द्वितीयक ऊतक बनते है। मूलें भी वार्षिक वलयों के रूप में वृद्धि प्रदर्शित करती हैं। बहुवर्षीय शाकीय पादपों (जिनमें वृद्धि ऋतु के पश्चात् तना व पत्तियां मृत हो जाते है) की मूलों के द्वितीयक जाइलम के अध्ययन को शाककालानुक्रमण (हर्बक्रोनोलोजी) कहते है।


तने की तरह मूल में भी द्वितीयक फ्लोएम की तुलना में द्वितीयक जाइलम अधिक मात्रा में निर्मित किया जाता है।

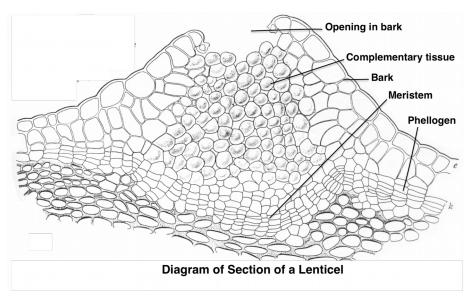
परित्वक (पेरीडर्म) का निर्माण:

लगातार द्वितीयक संहवन के संचय होने से तने व मूल की मोटाई बढ़ती जाती है। भीतर की ओर मोटाई बढ़ने के साथ साथ तने व मूल के बाहरी क्षेत्र (परिधि की ओर) में भी वृद्धि होती है। बाहरी क्षेत्र में उपस्थित कोशिकाएं जैसे - द्वितीयक व प्राथमिक फ्लोएम, परिरंभ (पेरीसाइकल), अंतःत्वचा वल्कुट व

बाह्य त्वचा इत्यादि में आरंभ में खिंचाव प्रारंभ होता है, जिससे ये टूटना शुरू हो जाती हैं। कुछ दुर्लभ पादपों (छाल रहित) में वृद्धिशील परिधि के साथ इन कोशिकाओं में विभाजन जारी रहता है। परिधीय क्षेत्र में इन टूटी हुई कोशिकाओं को पार्श्व विभज्योत्तक द्वारा निर्मित नई कोशिकाओं से प्रतिस्थापित किया जाता है। यह पार्श्व विभज्योत्तक कार्क एधा अथवा कागजन कहलाती है।

अधिकांश द्विबीजपित्रयों व कुछ एकबीजपित्रयों के तने व मूल में कार्क एधा (कागजन) विकित्तत होती है। तनों में कार्क एधा का उद्धभव वल्कुट अथवा फ्लोएम ऊतक तथा मूलों में पिरिंभ से होता है। यह अपनी दोनों तरफ विभाजित होती है। बाहर की ओर विभेदित होकर इसकी कोशिकाएं कार्क कोशिकाएं (कार्ग कोशिकाएं) तथा भीतर की ओर विभेदित होकर द्वितीयक वल्कुट अथवा कार्ग-अस्तर बनाती है। कागजन अल्प अविध की होती हैं, जो केवल कुछ हफ्तों तक सिक्रय होती है। तत्पश्चात ये कार्क में बदल जाती है तथा मृत हो जाती है। इसके बाद द्वितीयक वल्कुट अथवा द्वितीयक फ्लोएम के नए उतकों से पुन: नई कार्क एधा बनती है और वृद्धि का चक्र पुन: शुरू हो जाता है। समय के साथ कार्क की कई परतें बन जाती है।

कार्क अथवा काग की कोशिकाएं सामान्यतया मृत तथा इनकी प्राथमिक कोशिका भित्ति सुबेरिन युक्त होती है, जो इन्हें जल व गैसों के प्रति अपारगम्य बनाती है। काग के अपारगम्य होने के कारण, इससे बाहर के ऊतक (जैसे बाह्यत्वचा, वल्कुट, पुराना द्वितीयक फ्लोएम इत्यादि) जल की कमी के कारण मृत हो जाते है।


द्वितीयक वल्कुट अथवा काग-अस्तर की कोशिकाएं जीवित कोशिकाएं होती है। कई पादपों में कार्क एधा अल्प मात्रा (एक या दो कोशिकीय परत) अथवा नगण्य मात्रा में काग-अस्तर बनाती है।

काग, कागजन तथा काग-अस्तर संयुक्त रूप से परित्वक (पेरीडर्म) कहलाती है। मोटाई में निरंतर वृद्धि के फलस्वरूप परित्वक केवल अस्थाई सुरक्षा प्रदान करती है। समय के साथ साथ परित्वक खिंचती, टूटती और परतों के रूप में उतरती जाती है। पुरानी कागजन के भीतर की ओर नई कागजन बनती जाती है तथा सुरक्षा हेतु नई परित्वक परतें बन जाती है।

'छाल' एक गैर-तकनीकी शब्द है, जो संहवन एधा के बाहर के सभी ऊत्तकों के लिए प्रयुक्त किया जाता है। इसमें द्वितीयक व प्राथमिक फ्लोएम तथा परित्वक की सभी परतें सम्मिलित होती हैं। जब छाल में फ्लोएम रेशे, स्किलिरिड अथवा अन्य मोटी भित्ति युक्त कोशिकाएं इत्यादि अनुपस्थित तथा पतली भित्ति व चौड़े व्यास की चालनी निलकाएं उपस्थित होती है, तब छाल नरम होती है। कठोर छाल में दृढ़ोत्तक कोशिकाएं (जैसे - फ्लोएम रेशे व स्किलिरिड) तथा मोटी भित्ति व संकरी गृहिका युक्त चालनी निलकाएं उपस्थित होती है। सामान्यतया, वृद्धि ऋतु के आरंभ में बनने वाली छाल नरम होती है, इसे अग्र छाल कहते है, जबिक वृद्धि ऋतु के अंत के दौरान बनने वाली छाल तुलनात्मक रूप से कठोर होती है, इसे पश्च छाल कहते है। कई बार छाल को भीतरी छाल (जिसमें जीवित व सिक्रय ऊतक जैसे - फ्लोएम ऊतक, काग-अस्तर तथा कागजन इत्यादि उपस्थित होते हैं) तथा बाहरी छाल / राइटिडोम (जिसमें कागजन के बाहर की ओर निर्मित मृत ऊतक होते हैं) के रूप में भी विभेदित किया जाता है।

कार्क कोशिकाओं की बाहरी परतें सुबेरिन युक्त भित्ति की होती है, जो भीतरी जीवित कोशिकाओं के उतरजीविता और उपापचय हेतु गैसों के आदान-प्रदान को रोकती है। गैसीय विनिमय की सुविधा हेतु वातरंध्र (लेंटिसेल) पाए जाते हैं। वातरंध्र छाल में उपस्थित दीर्घित, वृत्ताकार अथवा अंडाकार छिद्र होते हैं, जो अंतराकोशिकीय अवकाशों युक्त कोशिकाओं से निर्मित होते है। इनमें पूरक अथवा भरण ऊतक पाया जाता है, जिसका निर्माण कागजन के साथ उपस्थित विभज्योत्तक द्वारा होता है। मृदुत्तकी कोशिकाएं बाद में सुबेरिन युक्त भित्ति की हो जाती हैं, इनका कोशिकाद्य्य नष्ट हो जाता हैं तथा ये मृत हो जाती हैं। वातरंध्रों के अंतराकोशिकीय अवकाश भीतरी वल्कुट व फ्लोएम की जीवित कोशिकाओं से संपर्क में रहते हैं, तािक गैसीय विनिमय सुचारू रूप से हो सके।

4. सारांश:

सामान्य द्विबीजपत्री पादपों के तनों व मूलों की मोटाई में वृद्धि पार्श्व विभज्योत्तक के फलस्वरूप होती है। पार्श्व विभज्योत्तक दो प्रकार की होती है। संहवन एधा तथा कार्क एधा (कागजन)। संहवन एधा विभेदित होकर द्वितीयक संहवन ऊतक बनाती है। यह भीतर की ओर विभेदित होकर द्वितीयक जाइलम तथा बाहर की ओर विभेदित होकर द्वितीयक फ्लोएम बनाती है। तने में पूलीय तथा अंतरापूलीय एधा मिलकर संहवन एधा बनाते है। मूलों में संहवन एधा का निर्माण संयोजी ऊतक तथा परिरंभ से होता है। ऋतु भिन्नता से संहवन एधा की सिक्रयता में परिवर्तन के फलस्वरूप काष्ठ में वार्षिक वलयों का निर्माण होता है।

तने के वल्कुट में तथा मूल के वल्कुट अथवा फ्लोएम से कागजन का उद्धभव होता है। कागजन की सिक्रियता से भीतर की ओर द्वितीयक वल्कुट अथवा काग-अस्तर तथा बाहर की ओर कार्क अथवा काग का निर्माण होता है।

काग, कागजन तथा काग-अस्तर को संयुक्त रूप से परित्वक कहा जाता है। द्वितीयक वृद्धि द्वारा मोटाई बढ़ने के फलस्वरूप बाहरी टूटती परतों की सुरक्षा परित्वक करती है। छाल एक गैर-तकनीकी शब्द है, जो संहवन एधा के बाहर के सभी ऊत्तकों के लिए प्रयुक्त किया जाता है। वातरंध्र छाल में उपस्थित छिद्र होते हैं, जो भीतरी जीवित कोशिकाओं तथा बाहरी वातावरण के मध्य गैसों का विनिमय करते हैं।